Fouten en residuen in de statistieken
Statistische fouten en residuen komen voor omdat de meting nooit exact is.
Het is niet mogelijk om een exacte meting te doen, maar het is wel mogelijk om te zeggen hoe nauwkeurig een meting is. Men kan steeds weer hetzelfde meten en alle gegevens bij elkaar verzamelen. Dit stelt ons in staat om statistieken over de gegevens te doen. Met fouten en residuen wordt het verschil bedoeld tussen de waargenomen of gemeten waarde en de werkelijke waarde, die onbekend is.
Als er slechts één willekeurige variabele is, is het verschil tussen statistische fouten en residuen het verschil tussen het gemiddelde van de populatie en het gemiddelde van de (waargenomen) steekproef. In dat geval is het residu het verschil tussen wat de kansverdeling zegt en wat daadwerkelijk gemeten is.
Stel dat er een experiment is om de hoogte van 21-jarige mannen uit een bepaald gebied te meten. Het gemiddelde van de verdeling is 1,75 m. Als een willekeurig gekozen man 1,80 m hoog is, is de "(statistische) fout" 0,05 m (5 cm); als hij 1,70 hoog is, is de fout -5 cm.
Een restfout (of montagefout) is daarentegen een waarneembare schatting van de niet-waarneembare statistische fout. In het eenvoudigste geval gaat het om een willekeurige steekproef van n mannen waarvan de hoogte wordt gemeten. Het steekproefgemiddelde wordt gebruikt als een schatting van het populatiegemiddelde. Dan hebben we dat:
- Het verschil tussen de hoogte van elke man in de steekproef en het niet-waarneembare populatiegemiddelde is een statistische fout, en
- Het verschil tussen de hoogte van elke man in het monster en het waarneembare monstergemiddelde is een restant.
De som van de residuen binnen een willekeurige steekproef moet nul zijn. De residuen zijn dus niet onafhankelijk. De som van de statistische fouten binnen een aselecte steekproef hoeft niet nul te zijn; de statistische fouten zijn onafhankelijke aselecte variabelen als de individuen onafhankelijk van elkaar uit de populatie worden gekozen.
Kortom:
Gerelateerde pagina's
Vragen en antwoorden
V: Wat wordt bedoeld met statistische fouten en residuen?
A: Statistische fouten en residuen verwijzen naar het verschil tussen de waargenomen of gemeten waarde en de werkelijke waarde, die onbekend is.
V: Hoe kan men de nauwkeurigheid van een meting meten?
A: Men kan hetzelfde ding steeds opnieuw meten en alle gegevens bij elkaar verzamelen. Zo kan men statistieken maken van de gegevens om te bepalen hoe nauwkeurig een meting is.
V: Wat is een voorbeeld van een statistische fout?
A: Een voorbeeld van een statistische fout is een experiment waarbij de lengte van 21-jarige mannen uit een bepaald gebied wordt gemeten met een verwacht gemiddelde van 1,75 m, maar één willekeurig gekozen man was 1,80 m lang; dan zou de "(statistische) fout" 0,05 m (5 cm) zijn.
V: Wat is een voorbeeld van een residu?
A: Een voorbeeld van een residu zou zijn dat er een experiment was om de lengte te meten van 21-jarige mannen uit een bepaald gebied met een verwacht gemiddelde van 1,75 m, maar een willekeurig gekozen man was 1,70 m lang; dan zou het residu (of de passende fout) -0,05 m (-5 cm) zijn.
V: Zijn residuen onafhankelijke variabelen?
A: Nee, de som van de residuen binnen een willekeurige steekproef moet nul zijn, dus het zijn geen onafhankelijke variabelen.
V: Zijn statistische fouten onafhankelijke variabelen?
A: Ja, de som van de statistische fouten binnen een willekeurige steekproef hoeft niet nul te zijn; daarom zijn het onafhankelijke willekeurige variabelen als de individuen onafhankelijk uit de populatie worden gekozen.
V: Zijn exacte metingen mogelijk?
A: Nee, het is niet mogelijk exacte metingen te doen, omdat metingen nooit exact zijn.